[image: A blue background with white text and white text]

Prepared by Randy Fadler
July 2025

📄 Executive Summary

Oracle ETL Processing: A Practical Guide with Real-World Application
This booklet is a comprehensive, hands-on guide to designing, building, and optimizing ETL (Extract, Transform, Load) pipelines using Oracle technologies. Written for data engineers, developers, and architects, it combines technical depth with practical insight—anchored by a real-world case study: the MediSure claims processing pipeline.
Over 14 chapters, the guide walks readers through every stage of the ETL lifecycle—from architectural planning and PL/SQL development to job scheduling, error handling, and cloud migration. Each chapter builds on the last, culminating in a reusable, metadata-driven ETL framework that can be adapted across industries and use cases.

Key topics include:
Oracle-native tools for data ingestion, transformation, and orchestration
Performance tuning with BULK COLLECT, FORALL, and parallel DML
Robust error handling and audit logging frameworks
Integration with enterprise schedulers like ActiveBatch and Autosys
Near real-time ETL strategies using polling, materialized views, and CDC
Cloud-native ETL design on Oracle Cloud Infrastructure (OCI)
Reusable templates for loaders, loggers, and job schedulers
The booklet emphasizes best practices in modularity, traceability, and resilience, equipping readers with not just code, but a mindset for building scalable, maintainable data pipelines.

Whether you're modernizing legacy batch jobs or designing cloud-ready ETL systems from scratch, this guide offers the tools, patterns, and perspective to do it right.

[bookmark: _Toc202342888]Oracle ETL Processing: A Practical Guide with Real-World Application
[bookmark: _Toc202342889]Table of Contents
Part I: Foundations
1. Introduction to Oracle ETL
· What is ETL and why it matters
· ETL vs ELT in Oracle environments
· 📌 Case Study Kickoff: Introducing the Claims Data Pipeline
2. Oracle Architecture for ETL
· Key Oracle components: SQL*Loader, External Tables, DBMS_SCHEDULER
· Data types, constraints, and performance considerations
· 📌 Case Study: Designing the Claims Table Structures
3. Designing an ETL Strategy
· Source-to-target mapping
· Incremental vs full loads
· Data validation and cleansing
· 📌 Case Study: Mapping Claims Data from Flat Files to Oracle Tables
Part II: Building the ETL Pipeline
4. PL/SQL for ETL
· Using cursors, collections, and bulk operations
· Modularizing logic with packages and procedures
· 📌 Case Study: Writing the Claims Data Loader Procedure
5. Performance Tuning for ETL
· Indexing, execution plans, and parallelism
· Managing large volumes of data
· 📌 Case Study: Optimizing the Claims Loader for 1M+ Rows
6. Error Handling and Logging
· Exception handling patterns
· Logging frameworks and audit tables
· 📌 Case Study: Implementing Error Logging for Claims ETL
Part III: Automation and Scheduling
7. Job Scheduling with DBMS_SCHEDULER
· Creating jobs, chains, and schedules
· Monitoring and troubleshooting
· 📌 Case Study: Automating the Claims ETL with DBMS_SCHEDULER
8. Integrating with ActiveBatch or Autosys
· Triggering Oracle jobs externally
· Handling dependencies and alerts
· 📌 Case Study: Scheduling Claims ETL in ActiveBatch
Part IV: Advanced Topics
9. Near Real-Time ETL
· Polling, materialized views, and change data capture (CDC)
· 📌 Case Study: Adding Near Real-Time Updates for New Claims
10. ETL in the Cloud
· Oracle Cloud Infrastructure (OCI) tools
· Hybrid cloud strategies
· 📌 Case Study: Migrating Claims ETL to Oracle Cloud
11. Testing and Validation
· Unit testing PL/SQL
· Data reconciliation and regression testing
· 📌 Case Study: Validating Claims Totals and Rejected Records
Part V: Templates, Tools, and Wrap-Up
12. Reusable ETL Templates
· Parameterized procedures
· Logging and audit frameworks
· 📌 Case Study: Generalizing the Claims ETL for Other Departments
13. Best Practices and Lessons Learned
· Documentation, version control, CI/CD for ETL
· Monitoring and continuous improvement
· 📌 Case Study: Lessons from the Claims Pipeline Rollout
14. Appendix
· Sample code snippets
· Glossary of terms
· References and further reading

Contents
Oracle ETL Processing: A Practical Guide with Real-World Application	3
Table of Contents	3
Part I: Foundations	7
📘 Chapter 1: Introduction to Oracle ETL	7
📘 Chapter 2: Oracle Architecture for ETL	9
📘 Chapter 3: Designing an ETL Strategy	12
Part II: Building the ETL Pipeline	15
📘 Chapter 4: PL/SQL for ETL	15
📘 Chapter 5: Performance Tuning for ETL	18
📘 Chapter 6: Error Handling and Logging	21
Part III: Automation and Scheduling	23
📘 Chapter 7: Job Scheduling with DBMS_SCHEDULER	23
📘 Chapter 8: Integrating with ActiveBatch or Autosys	25
Part IV: Advanced Topics	27
📘 Chapter 9: Near Real-Time ETL	27
📘 Chapter 10: ETL in the Cloud	30
📘 Chapter 11: Testing and Validation	32
Part V: Templates, Tools, and Wrap-Up	34
📘 Chapter 12: Reusable ETL Templates	34
📘 Chapter 13: Best Practices and Lessons Learned	37
📘 Chapter 14: Final Thoughts	39
📘 Appendix: Tools, Templates, and Reference Materials	41

[bookmark: _Toc202342890]Part I: Foundations
[bookmark: _Toc202342891]📘 Chapter 1: Introduction to Oracle ETL
Laying the Foundation for Scalable, Reliable Data Integration
🔍 What Is ETL?
In the realm of data engineering, ETL (Extract, Transform, Load) is a foundational process that enables organizations to move data from disparate sources into a centralized system for analysis, reporting, or operational use. The ETL pipeline is not merely a data conduit—it is a data refinery, responsible for ensuring that raw, inconsistent, or incomplete data is transformed into structured, validated, and query-optimized information.
In Oracle-based ecosystems, ETL is typically implemented using a combination of:
· PL/SQL for procedural logic and transformation
· SQLLoader* or external tables for high-volume ingestion
· DBMS_SCHEDULER or external tools like ActiveBatch for orchestration
🧠 Why Oracle for ETL?
Oracle Database is a mature, enterprise-grade RDBMS with features that make it particularly well-suited for ETL workloads:
· Robust procedural language (PL/SQL) for complex business logic
· Parallel execution and partitioning for high-performance data processing
· Built-in job scheduling and monitoring
· Support for external data sources via flat files, REST APIs, and database links
Oracle’s transactional integrity and indexing capabilities also make it ideal for incremental loads, data reconciliation, and auditable transformations—all critical in regulated industries like finance and healthcare.
⚖️ ETL vs ELT: Architectural Considerations
While ETL traditionally involves transforming data before loading it into the target system, ELT (Extract, Load, Transform) defers transformation until after the data is loaded—often leveraging the power of modern cloud data warehouses.
In Oracle environments, ETL remains dominant due to:
· The need for pre-load validation and cleansing
· Tight coupling with legacy systems
· The ability to encapsulate business rules in PL/SQL packages
That said, hybrid models are emerging, especially when Oracle is used alongside cloud platforms like Snowflake or AWS.
📌 Case Study Kickoff: The Claims Data Pipeline
To ground this discussion in a real-world context, we’ll build a complete ETL solution for a fictional healthcare company, MediSure.
🏥 Business Scenario:
MediSure receives daily insurance claims from dozens of clinics and hospitals. These arrive as CSV files via secure FTP and must be:
· Validated for structure and content
· Transformed into a normalized schema
· Loaded into an Oracle 19c database
· Audited for compliance
· Scheduled to run automatically each night
🧩 Technical Requirements:
· Handle 1M+ rows per day
· Support incremental loads with change tracking
· Provide error logging and retry mechanisms
· Enable job orchestration via DBMS_SCHEDULER and optionally ActiveBatch
This case study will evolve throughout the booklet, with each chapter contributing a new layer to the pipeline—from schema design and transformation logic to job scheduling and performance tuning.
🧠 Key Takeaways
· ETL is not just about moving data—it’s about ensuring data quality, consistency, and usability.
· Oracle provides a rich set of tools for building scalable, auditable ETL pipelines.
· Our case study will serve as a hands-on blueprint for building a production-grade ETL system using Oracle technologies.
[bookmark: _Toc202342892]📘 Chapter 2: Oracle Architecture for ETL
Designing a Scalable Foundation for Data Ingestion and Transformation
🧱 The Role of Architecture in ETL
· Before writing a single line of PL/SQL, a successful ETL pipeline begins with a well-structured architecture. This includes:
· Schema design for staging and target tables
· Data ingestion mechanisms (e.g., external tables, SQL*Loader)
· Transformation logic encapsulated in modular PL/SQL
· Job orchestration using DBMS_SCHEDULER or external tools
· Oracle’s architecture supports all of these components natively, making it a powerful platform for building resilient, auditable, and high-throughput ETL systems.
🏥 Case Study: MediSure Claims Pipeline – Architectural Overview
· Let’s revisit our case study. MediSure receives daily CSV files containing insurance claims from multiple clinics. These files must be:
· Ingested into a staging area
· Validated and transformed
· Loaded into a normalized target schema
· Audited and logged
· Scheduled to run nightly
· To support this, we’ll define the following architectural layers:
🗂️ 1. Staging Layer
· The staging schema is the landing zone for raw data. It mirrors the structure of the incoming files and is optimized for fast inserts.
CREATE TABLE staging_claims (
 claim_id VARCHAR2(50),
 patient_id VARCHAR2(50),
 provider_id VARCHAR2(50),
 claim_date DATE,
 diagnosis_code VARCHAR2(10),
 procedure_code VARCHAR2(10),
 amount_billed NUMBER(10,2),
 amount_paid NUMBER(10,2),
 raw_filename VARCHAR2(255),
 load_timestamp TIMESTAMP DEFAULT SYSTIMESTAMP
);
· This table will be truncated and reloaded daily. It includes metadata like raw_filename and load_timestamp for traceability.
🧮 2. Target Layer
· The target schema is normalized and optimized for querying and reporting. It may consist of multiple related tables:
CREATE TABLE claims (
 claim_id VARCHAR2(50) PRIMARY KEY,
 patient_id VARCHAR2(50),
 provider_id VARCHAR2(50),
 claim_date DATE,
 diagnosis_code VARCHAR2(10),
 procedure_code VARCHAR2(10),
 amount_billed NUMBER(10,2),
 amount_paid NUMBER(10,2),
 load_batch_id NUMBER,
 load_timestamp TIMESTAMP
);
· We’ll also create supporting tables for patients, providers, and diagnosis codes if needed.
📥 3. Ingestion Mechanism
· We’ll use external tables to read the CSV files directly from the file system:
CREATE TABLE ext_claims_file (
 claim_id VARCHAR2(50),
 patient_id VARCHAR2(50),
 provider_id VARCHAR2(50),
 claim_date VARCHAR2(10),
 diagnosis_code VARCHAR2(10),
 procedure_code VARCHAR2(10),
 amount_billed VARCHAR2(20),
 amount_paid VARCHAR2(20)
)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY claims_dir
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ','
 MISSING FIELD VALUES ARE NULL
)
 LOCATION ('claims_20250701.csv')
)
REJECT LIMIT UNLIMITED;
· This allows us to query the file like a table, enabling validation before loading.
🔄 4. Transformation Layer
· We’ll encapsulate transformation logic in PL/SQL packages, including:
· Data type conversions
· Null handling and defaulting
· Lookup and enrichment (e.g., mapping diagnosis codes)
· This logic will be applied as we move data from staging_claims to claims.
⏱️ 5. Scheduling and Orchestration
· We’ll use DBMS_SCHEDULER to automate the ETL process:
· Load external file into staging
· Validate and transform
· Load into target
· Log results and errors
· Later chapters will show how to integrate this with ActiveBatch for enterprise-level orchestration.
🧠 Key Takeaways
· Oracle provides a layered architecture for ETL: staging, transformation, and target.
· External tables offer a performant, flexible way to ingest flat files.
· A modular design using PL/SQL packages and scheduler jobs ensures maintainability and scalability.

[bookmark: _Toc202342893]📘 Chapter 3: Designing an ETL Strategy
From Source to Target: Mapping, Validating, and Planning for Change
🧭 Why Strategy Matters in ETL
· An ETL pipeline is only as good as the strategy behind it. Without a clear plan for how data will be extracted, transformed, and loaded, even the most technically sound system can become brittle, error-prone, or inefficient.
· A strong ETL strategy addresses:
· Source-to-target mapping
· Data validation and cleansing rules
· Incremental vs full load logic
· Error handling and recovery
· Auditability and traceability
🏥 Case Study: MediSure Claims Pipeline – Strategic Design
· Let’s return to our MediSure scenario. Each day, CSV files arrive containing new insurance claims. These files must be processed into a normalized Oracle schema. Here’s how we’ll approach it.

🔄 1. Source-to-Target Mapping
· We begin by defining how each column in the source file maps to the target schema.
	Source Field
	Target Column
	Transformation Rule

	claim_id
	claim_id
	Direct copy

	patient_id
	patient_id
	Direct copy

	provider_id
	provider_id
	Direct copy

	claim_date
	claim_date
	Convert from VARCHAR2 to DATE

	diagnosis_code
	diagnosis_code
	Validate against lookup table

	procedure_code
	procedure_code
	Validate against lookup table

	amount_billed
	amount_billed
	Convert to NUMBER, default to 0 if null

	amount_paid
	amount_paid
	Convert to NUMBER, default to 0 if null

· We’ll store this mapping in a metadata table to support dynamic ETL logic later.
🧼 2. Data Validation and Cleansing
· Before loading into the target schema, we’ll apply the following rules:
· Date format validation: Reject rows with invalid claim_date values
· Code lookups: Ensure diagnosis_code and procedure_code exist in reference tables
· Amount checks: Ensure amount_paid ≤ amount_billed
· Duplicate detection: Reject rows with duplicate claim_id values
· Rejected rows will be logged in an error table with detailed messages.
🔁 3. Incremental vs Full Loads
· Since MediSure receives daily files, we’ll use an incremental load strategy:
· Truncate the staging table daily
· Load only new claims into the target table
· Use a load_batch_id to track each day’s load
· This allows for reprocessing if a file fails and supports auditing by batch.
🧩 4. Error Handling and Recovery
· We’ll implement a two-tier error handling system:
· Row-level errors (e.g., bad data) go to an error table
· Job-level errors (e.g., file not found) are logged and trigger alerts
· Each ETL run will generate a summary report:
· Total rows processed
· Rows inserted
· Rows rejected
· Execution time
🧾 5. Audit and Logging
· We’ll create a claims_etl_log table to track:
· File name
· Load start and end times
· Number of rows processed
· Status (success/failure)
· Error messages (if any)
· This ensures traceability and supports compliance audits.
🧠 Key Takeaways
· A well-defined ETL strategy ensures data quality, reliability, and maintainability
· Source-to-target mapping and validation rules should be explicit and documented
· Incremental loading and audit logging are essential for scalability and traceability

[bookmark: _Toc202342894]Part II: Building the ETL Pipeline
[bookmark: _Toc202342895]📘 Chapter 4: PL/SQL for ETL
Building the Transformation Engine with Oracle’s Procedural Power
🧠 Why PL/SQL?
· PL/SQL (Procedural Language/SQL) is Oracle’s native procedural extension to SQL. It allows you to:
· Encapsulate business logic in reusable procedures and packages
· Handle exceptions and errors gracefully
· Perform bulk operations for high-volume data loads
· Maintain transactional integrity during complex transformations
· In ETL pipelines, PL/SQL serves as the transformation engine—the layer that converts raw, unstructured, or inconsistent data into clean, validated, and normalized records.
🏥 Case Study: MediSure Claims Loader
· We’ll now build the core ETL procedure that:
1. Reads data from the staging_claims table
2. Validates and transforms each row
3. Inserts valid rows into the claims table
4. Logs errors into an etl_errors table
🧱 Step 1: Define the Error Logging Table
CREATE TABLE etl_errors (
 error_id NUMBER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 source_table VARCHAR2(50),
 record_key VARCHAR2(100),
 error_message VARCHAR2(4000),
 error_timestamp TIMESTAMP DEFAULT SYSTIMESTAMP
);

🧱 Step 2: Create the ETL Procedure
CREATE OR REPLACE PROCEDURE load_claims_data (
 p_batch_id IN NUMBER
) AS
 CURSOR c_claims IS
 SELECT * FROM staging_claims;

 v_error_message VARCHAR2(4000);
BEGIN
 FOR rec IN c_claims LOOP
 BEGIN
 -- Validate and transform
 IF rec.claim_id IS NULL THEN
 RAISE_APPLICATION_ERROR(-20001, 'Missing claim_id');
 END IF;

 -- Insert into target table
 INSERT INTO claims (
 claim_id, patient_id, provider_id, claim_date,
 diagnosis_code, procedure_code, amount_billed,
 amount_paid, load_batch_id, load_timestamp
) VALUES (
 rec.claim_id, rec.patient_id, rec.provider_id,
 TO_DATE(rec.claim_date, 'YYYY-MM-DD'),
 rec.diagnosis_code, rec.procedure_code,
 NVL(rec.amount_billed, 0),
 NVL(rec.amount_paid, 0),
 p_batch_id, SYSTIMESTAMP
);

 EXCEPTION
 WHEN OTHERS THEN
 v_error_message := SQLERRM;
 INSERT INTO etl_errors (
 source_table, record_key, error_message
) VALUES (
 'staging_claims', rec.claim_id, v_error_message
);
 END;
 END LOOP;

 COMMIT;
END;
/
🧪 Notes on Design
· Cursor-based loop: Simple and readable for row-by-row validation
· TO_DATE conversion: Ensures proper date formatting
· NVL: Handles null numeric values
· Exception block: Captures and logs any transformation or insert errors
· In later chapters, we’ll optimize this with bulk processing using FORALL and BULK COLLECT.
🧠 Key Takeaways
· PL/SQL is ideal for encapsulating ETL logic with validation, transformation, and error handling
· Modular procedures make the pipeline easier to test, maintain, and extend
· Logging errors to a dedicated table ensures traceability and supports reprocessing

[bookmark: _Toc202342896]📘 Chapter 5: Performance Tuning for ETL
Optimizing PL/SQL for High-Volume Data Loads
⚙️ Why Performance Tuning Matters
· In ETL pipelines, performance bottlenecks often arise from:
· Row-by-row processing (a.k.a. “slow-by-slow”)
· Poor indexing or lack of partitioning
· Inefficient exception handling
· Unnecessary context switches between SQL and PL/SQL
· Oracle provides several tools and techniques to mitigate these issues, including:
· BULK COLLECT and FORALL
· Parallel DML
· Execution plan analysis
· PL/SQL profiling and instrumentation
🏥 Case Study: MediSure Claims Loader – Refactored
· Let’s refactor our load_claims_data procedure using bulk processing to improve throughput.
🧱 Step 1: Define PL/SQL Types
CREATE OR REPLACE PACKAGE etl_types AS
 TYPE t_claims_tab IS TABLE OF staging_claims%ROWTYPE INDEX BY PLS_INTEGER;
END etl_types;
/
🧱 Step 2: Refactor Procedure with BULK COLLECT and FORALL
CREATE OR REPLACE PROCEDURE load_claims_data_bulk (
 p_batch_id IN NUMBER
) AS
 l_claims etl_types.t_claims_tab;
 l_errors etl_types.t_claims_tab;
 l_limit PLS_INTEGER := 1000;
 l_offset PLS_INTEGER := 0;
 l_total_rows PLS_INTEGER := 0;
BEGIN
 LOOP
 -- Bulk collect a chunk of rows
 SELECT * BULK COLLECT INTO l_claims
 FROM staging_claims
 OFFSET l_offset ROWS FETCH NEXT l_limit ROWS ONLY;

 EXIT WHEN l_claims.COUNT = 0;

 BEGIN
 FORALL i IN INDICES OF l_claims SAVE EXCEPTIONS
 INSERT INTO claims (
 claim_id, patient_id, provider_id, claim_date,
 diagnosis_code, procedure_code, amount_billed,
 amount_paid, load_batch_id, load_timestamp
) VALUES (
 l_claims(i).claim_id, l_claims(i).patient_id, l_claims(i).provider_id,
 TO_DATE(l_claims(i).claim_date, 'YYYY-MM-DD'),
 l_claims(i).diagnosis_code, l_claims(i).procedure_code,
 NVL(l_claims(i).amount_billed, 0),
 NVL(l_claims(i).amount_paid, 0),
 p_batch_id, SYSTIMESTAMP
);

 EXCEPTION
 WHEN OTHERS THEN
 FOR j IN 1 .. SQL%BULK_EXCEPTIONS.COUNT LOOP
 INSERT INTO etl_errors (
 source_table, record_key, error_message
) VALUES (
 'staging_claims',
 l_claims(SQL%BULK_EXCEPTIONS(j).ERROR_INDEX).claim_id,
 SQLERRM(-SQL%BULK_EXCEPTIONS(j).ERROR_CODE)
);
 END LOOP;
 END;

 l_offset := l_offset + l_limit;
 l_total_rows := l_total_rows + l_claims.COUNT;
 END LOOP;

 COMMIT;
 DBMS_OUTPUT.PUT_LINE('Total rows processed: ' || l_total_rows);
END;
/
🚀 Performance Gains
	Technique Used
	Benefit

	BULK COLLECT
	Reduces context switches between SQL and PL/SQL

	FORALL
	Executes DML in batches, not row-by-row

	SAVE EXCEPTIONS
	Captures row-level errors without halting the batch

	Pagination logic
	Prevents memory overflow on large datasets

🧠 Key Takeaways
· Bulk processing is essential for high-volume ETL in Oracle
· Use SAVE EXCEPTIONS to isolate bad rows without failing the entire batch
· Always profile and test with realistic data volumes

[bookmark: _Toc202342897]📘 Chapter 6: Error Handling and Logging
Building Resilience and Traceability into Your ETL Pipeline
⚠️ Why Error Handling Matters
In ETL systems, errors are inevitable—bad data, missing files, constraint violations, or unexpected nulls. What separates a brittle pipeline from a resilient one is how it detects, logs, and recovers from those failures.
A robust error handling strategy:
· Prevents bad data from corrupting downstream systems
· Provides visibility into what went wrong and why
· Enables reprocessing of failed records
· Supports compliance and auditability
🏥 Case Study: MediSure Claims Pipeline – Logging Strategy
Let’s enhance our MediSure ETL process with a two-tier logging system:
1. Row-level error logging: Captures data issues (e.g., invalid dates, nulls, duplicates)
2. Job-level logging: Captures metadata about each ETL run (e.g., file name, row counts, status)
🧱 Step 1: Create the Logging Tables
Row-Level Errors
CREATE TABLE etl_errors (
 error_id NUMBER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 source_table VARCHAR2(50),
 record_key VARCHAR2(100),
 error_message VARCHAR2(4000),
 error_timestamp TIMESTAMP DEFAULT SYSTIMESTAMP
);
Job-Level Audit Log
CREATE TABLE etl_job_log (
 job_id NUMBER GENERATED ALWAYS AS IDENTITY PRIMARY KEY,
 job_name VARCHAR2(100),
 file_name VARCHAR2(255),
 start_time TIMESTAMP,
 end_time TIMESTAMP,
 rows_processed NUMBER,
 rows_inserted NUMBER,
 rows_failed NUMBER,
 status VARCHAR2(20),
 error_summary VARCHAR2(4000)
);
🧱 Step 2: Add Logging to the ETL Procedure
At the start and end of your load_claims_data_bulk procedure, insert into etl_job_log:
DECLARE
 v_start_time TIMESTAMP := SYSTIMESTAMP;
 v_end_time TIMESTAMP;
 v_rows_inserted NUMBER := 0;
 v_rows_failed NUMBER := 0;
 v_job_id NUMBER;
BEGIN
 INSERT INTO etl_job_log (
 job_name, file_name, start_time, status
) VALUES (
 'load_claims_data_bulk', 'claims_20250701.csv', v_start_time, 'IN_PROGRESS'
) RETURNING job_id INTO v_job_id;

 -- [ETL logic goes here, incrementing v_rows_inserted and v_rows_failed]

 v_end_time := SYSTIMESTAMP;

 UPDATE etl_job_log
 SET end_time = v_end_time,
 rows_inserted = v_rows_inserted,
 rows_failed = v_rows_failed,
 status = 'SUCCESS'
 WHERE job_id = v_job_id;

EXCEPTION
 WHEN OTHERS THEN
 UPDATE etl_job_log
 SET end_time = SYSTIMESTAMP,
 status = 'FAILED',
 error_summary = SQLERRM
 WHERE job_id = v_job_id;
 RAISE;
END;
🧠 Best Practices
· Use SAVE EXCEPTIONS in FORALL to isolate bad rows
· Include record keys (e.g., claim_id) in error logs for traceability
· Store file names and batch IDs to support reprocessing
· Consider building a dashboard or report on etl_job_log for monitoring
🧠 Key Takeaways
· Error handling is not just about catching exceptions—it’s about making failures observable and recoverable
· Logging both row-level and job-level events gives you full visibility into ETL health
· A well-logged ETL system is easier to debug, audit, and maintain

[bookmark: _Toc202342898]Part III: Automation and Scheduling
[bookmark: _Toc202342899]📘 Chapter 7: Job Scheduling with DBMS_SCHEDULER
Automating Oracle ETL Pipelines with Built-In Scheduling Tools
⏱️ Why Scheduling Matters
· An ETL pipeline is only valuable if it runs reliably and consistently. Manual execution is fine for development, but in production, you need automation. Oracle’s DBMS_SCHEDULER provides a powerful, flexible way to:
· Schedule recurring jobs
· Chain dependent tasks
· Monitor execution status
· Handle retries and failures
· Unlike older tools like DBMS_JOB, DBMS_SCHEDULER supports event-based triggers, external programs, and fine-grained control over job execution.
🏥 Case Study: MediSure Claims Pipeline – Scheduling Requirements
· MediSure’s nightly ETL process must:
· Start after new claim files arrive
· Run the load_claims_data_bulk procedure
· Log job metadata and errors
· Retry on failure (up to 3 times)
· Notify operations if the job fails
🧱 Step 1: Create a Scheduler Program
BEGIN
 DBMS_SCHEDULER.create_program (
 program_name => 'load_claims_program',
 program_type => 'PLSQL_BLOCK',
 program_action => 'BEGIN load_claims_data_bulk(p_batch_id => TO_NUMBER(TO_CHAR(SYSDATE, ''YYYYMMDD''))); END;',
 number_of_arguments => 0,
 enabled => TRUE
);
END;
/
🧱 Step 2: Create a Scheduler Job
BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'load_claims_job',
 program_name => 'load_claims_program',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'FREQ=DAILY; BYHOUR=2; BYMINUTE=0; BYSECOND=0',
 enabled => TRUE,
 comments => 'Nightly ETL job for MediSure claims data'
);
END;
/
· This job runs every night at 2:00 AM.
🧱 Step 3: Monitor and Log Job Runs
· You can query Oracle’s built-in views to monitor job status:
SELECT job_name, status, run_duration, error#, additional_info
FROM dba_scheduler_job_run_details
WHERE job_name = 'LOAD_CLAIMS_JOB'
ORDER BY log_date DESC;
· You can also integrate this with your etl_job_log table for centralized reporting.
🔁 Optional: Retry Logic
· Oracle doesn’t retry failed jobs by default, but you can simulate retries by:
· Creating a job chain with conditional logic
· Using a wrapper procedure that tracks attempts
· Logging failures and requeuing jobs manually
🧠 Key Takeaways
· DBMS_SCHEDULER is a powerful native tool for automating Oracle ETL
· Use programs, jobs, and chains to modularize and control execution
· Combine with logging and alerting to build a resilient, observable pipeline

[bookmark: _Toc202342900]📘 Chapter 8: Integrating with ActiveBatch or Autosys
Enterprise-Grade Scheduling and Automation for Oracle ETL
🧠 Why Use a Job Scheduler?
1. While Oracle’s DBMS_SCHEDULER is powerful, enterprise environments often require more:
· Cross-platform orchestration (e.g., coordinating Oracle jobs with file transfers, Python scripts, or cloud APIs)
· Dependency management across systems
· Alerting and retry logic
· Centralized monitoring and audit trails
2. Tools like ActiveBatch and Autosys provide these capabilities, making them ideal for managing production ETL pipelines.
🏥 Case Study: MediSure Claims Pipeline – Scheduling Requirements
3. MediSure’s ETL process must:
· Run nightly after files arrive via SFTP
· Validate file presence before loading
· Trigger the load_claims_data_bulk procedure
· Log success/failure and send alerts
· Retry failed jobs up to 3 times
⚙️ ActiveBatch Integration Overview
4. In ActiveBatch, we’ll define a job chain with the following steps:
5. File Watcher Job
· Monitors the SFTP directory for new files
· Triggers downstream jobs when a file is detected
6. PL/SQL Execution Job
· Executes the load_claims_data_bulk procedure via SQL*Plus or a database connector
· Passes in the batch_id and file name as parameters
7. Audit and Notification Job
· Queries the etl_job_log table
· Sends email alerts based on job status
8. Retry Logic
· Configured at the job level (e.g., retry on failure up to 3 times with exponential backoff)
🧱 Sample ActiveBatch Command Step
bash
sqlplus etl_user/password@ORCL <<EOF
BEGIN
 load_claims_data_bulk(p_batch_id => 20250702);
END;
/
EXIT
EOF
9. This step can be wrapped in a shell script or executed directly from an ActiveBatch command job.
🧪 Autosys Equivalent
10. In Autosys, you’d define a box job with:
· file_check_job (using ls or test -f)
· run_etl_job (calling SQL*Plus or a wrapper script)
· log_status_job (querying Oracle and sending alerts)
11. Dependencies are managed using condition: and success: attributes.
📊 Monitoring and Alerting
12. Both ActiveBatch and Autosys support:
· Job dashboards with real-time status
· Email/SMS alerts on failure or delay
· Audit logs for compliance and troubleshooting
13. You can also integrate with tools like AppDynamics, Splunk, or Grafana for deeper observability.
🧠 Key Takeaways
· Enterprise schedulers like ActiveBatch and Autosys provide robust orchestration for complex ETL workflows
· Integrating Oracle ETL with these tools improves resilience, traceability, and operational control
· Use job metadata (e.g., etl_job_log) to drive alerting and reporting

[bookmark: _Toc202342901]Part IV: Advanced Topics
[bookmark: _Toc202342902]📘 Chapter 9: Near Real-Time ETL
Designing Low-Latency Pipelines with Oracle
⚡ What Is Near Real-Time ETL?
Near real-time ETL refers to data pipelines that process and deliver updates within seconds to minutes of data arrival—rather than on a fixed schedule (e.g., nightly). It’s not quite streaming, but it’s fast enough to support:
· Operational dashboards
· Fraud detection
· Time-sensitive reporting
· SLA-driven data availability
🏥 Case Study: MediSure Claims Pipeline – Real-Time Requirements
MediSure’s leadership wants to reduce the delay between claim submission and visibility in the reporting system. Instead of waiting for the nightly batch, they want:
· New claims to appear within 5 minutes
· Error records to be flagged immediately
· Dashboards to reflect near-current totals
🧱 Architectural Options in Oracle
1. Polling-Based Micro-Batches
· Run the ETL procedure every 1–5 minutes using DBMS_SCHEDULER
· Use a file arrival flag or timestamp filter to process only new data
· Simple to implement, but may introduce redundant checks
2. External Event Triggers
· Use ActiveBatch or Autosys to trigger the ETL job when a file is detected
· Reduces polling overhead
· Requires reliable file delivery and monitoring
3. Materialized Views with Fast Refresh
· Use materialized views to reflect changes from staging to reporting tables
· Fast refresh on commit or interval
· Best for read-heavy systems with minimal transformation logic
4. Change Data Capture (CDC)
· Use Oracle’s CDC or Streams to detect and propagate changes
· More complex to configure
· Ideal for high-volume transactional systems
🧪 Implementation: Polling-Based Micro-Batch
Here’s how we can modify our load_claims_data_bulk procedure to support near real-time updates:
-- Add a processed_flag to staging_claims
ALTER TABLE staging_claims ADD processed_flag CHAR(1) DEFAULT 'N';

-- Modify the procedure to only process new rows
SELECT * BULK COLLECT INTO l_claims
FROM staging_claims
WHERE processed_flag = 'N'
ORDER BY load_timestamp
OFFSET l_offset ROWS FETCH NEXT l_limit ROWS ONLY;

-- After successful insert
UPDATE staging_claims
SET processed_flag = 'Y'
WHERE claim_id = l_claims(i).claim_id;
Then schedule this procedure to run every 2–5 minutes using:
BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'load_claims_realtime',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN load_claims_data_bulk(p_batch_id => SYSDATE); END;',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'FREQ=MINUTELY; INTERVAL=2',
 enabled => TRUE
);
END;
/
📊 Monitoring and Alerting
· Use etl_job_log to track each micro-batch
· Set up alerts for:
· Consecutive failures
· High error rates
· Delayed file arrivals
🧠 Key Takeaways
· Near real-time ETL bridges the gap between batch and streaming
· Oracle supports this via micro-batching, materialized views, and CDC
· Choose the right strategy based on latency requirements, data volume, and system complexity

[bookmark: _Toc202342903]📘 Chapter 10: ETL in the Cloud
Modernizing Oracle ETL Pipelines for OCI and Hybrid Environments
☁️ Why Move ETL to the Cloud?
· Cloud platforms offer several advantages for ETL workloads:
· Elastic compute: Scale up or down based on data volume
· Managed services: Reduce operational overhead
· Integration: Connect easily with APIs, cloud storage, and SaaS platforms
· Cost efficiency: Pay only for what you use
· Oracle Cloud Infrastructure (OCI) provides native tools for data integration, but many organizations also run hybrid ETL pipelines—with Oracle databases on-prem and orchestration or storage in the cloud.
🏥 Case Study: MediSure Cloud Migration Goals
· MediSure wants to:
· Store incoming claim files in OCI Object Storage
· Run ETL logic on OCI Compute or Autonomous Database
· Use Oracle Data Integration for orchestration
· Maintain compatibility with existing PL/SQL logic
🧱 Cloud-Ready ETL Architecture
	Layer
	On-Prem Version
	Cloud Equivalent (OCI)

	File Ingestion
	SFTP to local directory
	OCI Object Storage + Pre-authenticated URLs

	Staging Tables
	Oracle 19c on-prem
	Autonomous Database (ATP)

	Transformation
	PL/SQL packages
	PL/SQL in ATP or OCI Functions (for micro-ETL)

	Scheduling
	DBMS_SCHEDULER / ActiveBatch
	OCI Data Integration / OCI Resource Manager

	Monitoring
	Custom logging tables
	OCI Logging + Alarms + Application Performance Monitoring (APM)

📥 Ingesting Files into OCI
· Files can be uploaded to OCI Object Storage using:
· Pre-authenticated URLs
· REST APIs
· Oracle Cloud CLI
· Once uploaded, a Function or Data Integration job can be triggered to:
· Validate the file
· Load it into a staging table in Autonomous Database
· Log the job status
🧪 Refactoring PL/SQL for the Cloud
· If you’re moving to Autonomous Transaction Processing (ATP):
· Most PL/SQL code will run unchanged
· You can use external tables with Object Storage URIs
· Logging can be enhanced with DBMS_CLOUD and DBMS_OUTPUT
· Example: Creating an external table in ATP from Object Storage
BEGIN
 DBMS_CLOUD.CREATE_EXTERNAL_TABLE(
 table_name => 'ext_claims',
 credential_name => 'my_oci_cred',
 file_uri_list => 'https://objectstorage.us-phoenix-1.oraclecloud.com/.../claims_20250701.csv',
 format => json_object('type' value 'csv', 'skipheaders' value '1'),
 column_list => 'claim_id VARCHAR2(50), patient_id VARCHAR2(50), ...'
);
END;
🧠 Best Practices for Cloud ETL
· Use Object Storage as your landing zone
· Leverage Autonomous Database for transformation logic
· Use OCI Data Integration or Functions for orchestration
· Monitor with OCI Logging, Alarms, and APM
🧠 Key Takeaways
· Cloud ETL enables scalability, automation, and integration with modern data platforms
· Oracle’s cloud-native tools support hybrid and full-cloud ETL architectures
· Migrating PL/SQL-based ETL to OCI is often straightforward and highly performant

[bookmark: _Hlk202342244][bookmark: _Toc202342904]📘 Chapter 11: Testing and Validation
Ensuring Accuracy, Integrity, and Confidence in Your ETL Pipeline
🧪 Why Testing Matters in ETL
· ETL pipelines are responsible for moving and transforming critical business data. A single error—whether in logic, data type conversion, or aggregation—can ripple through reports, dashboards, and decisions. That’s why testing and validation are not optional—they’re essential.
· Testing in ETL spans multiple layers:
· Unit testing of transformation logic
· Data validation against business rules
· Reconciliation between source and target
· Regression testing after changes
🏥 Case Study: MediSure Claims Pipeline – Testing Objectives
· For MediSure, testing ensures:
· Claims are loaded accurately and completely
· Invalid or duplicate records are caught and logged
· Totals in the target match those in the source
· Changes to the ETL logic don’t break existing functionality
🧱 1. Unit Testing PL/SQL Logic
· Use PL/SQL procedures and anonymous blocks to test:
· Date conversions
· Null handling
· Lookup logic
· Example:
BEGIN
 DBMS_OUTPUT.PUT_LINE(
 TO_CHAR(validate_claim_date('2025-07-01'), 'YYYY-MM-DD')
);
END;
· You can also use frameworks like utPLSQL for automated unit testing.
🧱 2. Data Validation Rules
· Create a reusable validation procedure:
PROCEDURE validate_claim (
 p_claim_id IN VARCHAR2,
 p_valid OUT BOOLEAN,
 p_error OUT VARCHAR2
);
· This can be called during ETL or in pre-load checks to enforce business rules.
🧱 3. Reconciliation Queries
· After loading, compare source and target:
SELECT COUNT(*) FROM staging_claims WHERE processed_flag = 'Y';
SELECT COUNT(*) FROM claims WHERE load_batch_id = :batch_id;
· Also compare aggregates:
SELECT SUM(amount_billed), SUM(amount_paid) FROM staging_claims;
SELECT SUM(amount_billed), SUM(amount_paid) FROM claims WHERE load_batch_id = :batch_id;
🧱 4. Regression Testing
· Before deploying changes:
· Run the ETL on a copy of production data
· Compare row counts, aggregates, and sample records
· Use MINUS queries to detect differences:
SELECT * FROM claims_old
MINUS
SELECT * FROM claims_new;
🧠 Best Practices
· Automate tests where possible
· Validate both structure (schema, types) and content (values, rules)
· Maintain a test harness with reusable scripts
· Log test results for traceability
🧠 Key Takeaways
· Testing is the safety net of your ETL pipeline
· Combine unit tests, validation logic, and reconciliation queries
· Build testing into your development and deployment lifecycle

[bookmark: _Toc202342905]Part V: Templates, Tools, and Wrap-Up
[bookmark: _Toc202342906]📘 Chapter 12: Reusable ETL Templates
Building a Toolkit for Scalable, Maintainable Oracle Pipelines
🧠 Why Templates Matter
· In enterprise environments, ETL pipelines often share common patterns:
· Load from flat files
· Validate and transform data
· Log errors and audit results
· Schedule and monitor jobs
· Rather than reinventing the wheel for each new data source, we can build parameterized, reusable templates that:
· Reduce development time
· Improve consistency and quality
· Simplify onboarding for new developers
· Enable plug-and-play extensibility
🏥 Case Study: Generalizing the MediSure Pipeline
· Let’s extract the core logic from the MediSure claims loader and turn it into a generic ETL framework that can be reused for:
· Claims
· Patient records
· Provider updates
· Any structured flat file
🧱 Template 1: Parameterized Loader Procedure
PROCEDURE load_data_generic (
 p_source_table IN VARCHAR2,
 p_target_table IN VARCHAR2,
 p_batch_id IN NUMBER,
 p_column_mapping IN CLOB,
 p_validation_proc IN VARCHAR2
);
· p_source_table: Name of the staging table
· p_target_table: Name of the target table
· p_column_mapping: JSON or delimited string defining source-to-target mapping
· p_validation_proc: Optional procedure to validate each row
· This allows you to define dynamic ETL jobs driven by metadata.
🧱 Template 2: Logging Framework
· Standardize your logging with a package like:
PACKAGE etl_logger AS
 PROCEDURE log_job_start(p_job_name VARCHAR2, p_file_name VARCHAR2);
 PROCEDURE log_job_end(p_status VARCHAR2, p_rows_processed NUMBER, p_rows_failed NUMBER);
 PROCEDURE log_error(p_source_table VARCHAR2, p_record_key VARCHAR2, p_error_message VARCHAR2);
END;
· This package can be reused across all ETL jobs and integrated with dashboards or alerting systems.
🧱 Template 3: Scheduler Job Generator
· Use a procedure to dynamically create DBMS_SCHEDULER jobs:
PROCEDURE create_etl_job (
 p_job_name IN VARCHAR2,
 p_proc_name IN VARCHAR2,
 p_repeat_interval IN VARCHAR2,
 p_start_time IN TIMESTAMP
);
· This allows operations teams to deploy and manage jobs without writing raw SQL.
🧪 Bonus: Metadata-Driven ETL
· Store mappings and validation rules in metadata tables:
sql
CREATE TABLE etl_column_map (
 source_table VARCHAR2(50),
 target_table VARCHAR2(50),
 source_column VARCHAR2(50),
 target_column VARCHAR2(50),
 transformation VARCHAR2(4000)
);
· Your generic loader can then dynamically build SQL based on this metadata.
🧠 Key Takeaways
· Reusable templates reduce duplication and increase maintainability
· Parameterized procedures and metadata tables enable dynamic ETL pipelines
· A centralized logging and scheduling framework supports enterprise-scale operations

[bookmark: _Toc202342907]📘 Chapter 13: Best Practices and Lessons Learned
Designing ETL Systems That Last
🧠 Why Best Practices Matter
· ETL systems are often built under pressure—tight deadlines, shifting requirements, and legacy constraints. But the difference between a fragile pipeline and a resilient one lies in the discipline of design and the lessons learned from experience.
· This chapter captures the hard-won insights from building the MediSure claims pipeline and general Oracle ETL systems.
✅ Design Best Practices
1. Separate Staging from Target
· Use staging tables to isolate raw data
· Avoid direct inserts into production tables
· Enables reprocessing and rollback
2. Modularize with PL/SQL Packages
· Group related procedures and functions
· Use private helper procedures for internal logic
· Improves readability and reusability
3. Use Metadata-Driven Logic
· Store mappings and rules in tables
· Drive transformations dynamically
· Reduces code duplication and hardcoding
4. Design for Idempotency
· Ensure rerunning a job doesn’t duplicate or corrupt data
· Use keys, flags, or batch IDs to track processed records
🛡️ Operational Best Practices
1. Log Everything That Matters
· Job start/end times, row counts, errors
· Store logs in structured tables, not just files
· Enables dashboards, alerts, and audits
2. Fail Loud, Fail Fast
· Catch and log exceptions early
· Don’t silently skip bad data—record it
· Use SAVE EXCEPTIONS to isolate row-level issues
3. Automate Scheduling and Monitoring
· Use DBMS_SCHEDULER, ActiveBatch, or Autosys
· Set up alerts for failures, delays, and anomalies
· Monitor job health with dashboards or APM tools
4. Test with Realistic Data Volumes
· Don’t rely on toy datasets
· Simulate production volumes and edge cases
· Profile and tune before go-live
🧩 Lessons Learned from MediSure
· Start with a real use case: The claims pipeline gave us a concrete anchor for design decisions.
· Build logging early: It’s tempting to skip, but logging saved hours of debugging.
· Bulk processing is a must: FORALL and BULK COLLECT made a 10x difference in performance.
· Metadata pays off: Dynamic loaders are harder to write—but easier to maintain.
· Cloud migration is smoother than expected: OCI’s Autonomous Database handled PL/SQL with minimal changes.
🧠 Key Takeaways
· ETL is not just about moving data—it’s about building trust in data
· The best pipelines are modular, observable, and resilient
· Learn from each project and refactor your toolkit as you go

[bookmark: _Toc202342908]📘 Chapter 14: Final Thoughts
The Art and Discipline of ETL Engineering
🧠 The Journey We’ve Taken
· Over the course of this booklet, we’ve built a complete, production-grade ETL pipeline using Oracle technologies. From ingesting raw CSV files to transforming and loading them into a normalized schema, from error handling to near real-time processing, we’ve walked through the entire lifecycle of an enterprise ETL system.
· We didn’t just write code—we designed systems. We thought about:
· Architecture before implementation
· Validation before transformation
· Logging before troubleshooting
· Scalability before deployment
· And we did it all through the lens of a real-world case study: the MediSure claims pipeline.
🧩 What Makes a Great ETL Engineer?
· It’s not just about knowing PL/SQL or writing fast queries. A great ETL engineer:
· Thinks like a data steward, not just a coder
· Designs for resilience, not just success
· Builds for change, not just today’s requirements
· Communicates clearly with stakeholders and systems alike
· ETL is where business meets data, and your job is to make that handshake seamless, reliable, and traceable.
🛠️ What to Keep in Your Toolkit
· A library of reusable templates: loaders, loggers, validators
· A metadata-driven mindset: let data define behavior
· A habit of logging and auditing: make the invisible visible
· A bias toward modularity: small, testable, composable units
🌱 What’s Next?
· The world of data engineering is evolving:
· Streaming and real-time architectures are becoming the norm
· Cloud-native ETL is replacing legacy batch jobs
· DataOps and CI/CD are bringing DevOps principles to pipelines
· But the fundamentals remain the same: understand your data, respect the details, and build with purpose.
🙏 A Personal Note
· If you’ve made it this far, thank you. Whether you’re a seasoned Oracle developer or just getting started in data engineering, I hope this guide has given you not just tools—but perspective.
· And remember: details matter. They always have. They always will.

[bookmark: _Toc202342909]📘 Appendix: Tools, Templates, and Reference Materials
📚 A. Glossary of Key Terms
	Term
	Definition

	ETL
	Extract, Transform, Load – the process of moving and reshaping data from source to target systems.

	PL/SQL
	Oracle’s procedural extension to SQL, used for writing stored procedures, functions, and packages.

	Staging Table
	A temporary or intermediate table used to hold raw data before transformation.

	BULK COLLECT
	A PL/SQL feature that retrieves multiple rows into a collection in a single operation.

	FORALL
	A PL/SQL construct that allows bulk DML operations on collections.

	DBMS_SCHEDULER
	Oracle’s built-in job scheduling package for automating tasks.

	ActiveBatch / Autosys
	Enterprise job scheduling tools used to orchestrate ETL workflows across systems.

	CDC (Change Data Capture)
	A method for identifying and processing only changed data.

	Object Storage
	Cloud-based storage for unstructured data, such as CSV files, used in OCI.

🧰 B. Reusable Code Snippets
1. Create External Table from CSV
CREATE TABLE ext_claims_file (
 claim_id VARCHAR2(50),
 ...
)
ORGANIZATION EXTERNAL (
 TYPE ORACLE_LOADER
 DEFAULT DIRECTORY claims_dir
 ACCESS PARAMETERS (
 RECORDS DELIMITED BY NEWLINE
 FIELDS TERMINATED BY ','
)
 LOCATION ('claims_20250701.csv')
);
2. Basic DBMS_SCHEDULER Job
BEGIN
 DBMS_SCHEDULER.create_job (
 job_name => 'load_claims_job',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN load_claims_data_bulk(20250701); END;',
 start_date => SYSTIMESTAMP,
 repeat_interval => 'FREQ=DAILY; BYHOUR=2',
 enabled => TRUE
);
END;
/
3. Logging Error Rows
INSERT INTO etl_errors (
 source_table, record_key, error_message
) VALUES (
 'staging_claims', rec.claim_id, SQLERRM
);
🧪 C. Test Queries
Reconciliation Check
SELECT COUNT(*) FROM staging_claims WHERE processed_flag = 'Y';
SELECT COUNT(*) FROM claims WHERE load_batch_id = :batch_id;
Data Difference Check
SELECT * FROM claims_old
MINUS
SELECT * FROM claims_new;
🔗 D. Tools and Resources
· Oracle PL/SQL Documentation
· utPLSQL Testing Framework
· Oracle Cloud Infrastructure (OCI)
· ActiveBatch Workload Automation
· Autosys Job Scheduler

Page | 2

image1.png
ORACLE
ETL

Processing

A Practical Guide with Real-World Application
A
ETL -

July 2025

